Morphological and membrane characteristics of spider and spindle cells isolated from rabbit sinus node.

نویسندگان

  • J Wu
  • R B Schuessler
  • M D Rodefeld
  • J E Saffitz
  • J P Boineau
چکیده

This study reports the comparative quantitative, morphological, and electrophysiological properties of two pacemaker cell types, spider and spindle-shaped cells, isolated from the rabbit sinoatrial node. Isolated nodal cells were studied with perforated and ruptured patch whole cell recording techniques. The basic spontaneous cycle length of the spider cells was 381 +/- 12 ms, and the basic spontaneous cycle length of the spindle cells was 456 +/- 17 ms (n = 12, P < 0.05). The spider cells had a more positive maximum diastolic potential (-54 +/- 1 mV) compared with the spindle cells (-68 +/- 1mV, P < 0.05). The overshoot and action potential amplitudes were also smaller in the spider cells. The hyperpolarization-activated inward (I(f)) current density, measured from their tail currents, was 15 +/- 1.3 pA/pF for the spider cells and 9 +/- 0.7 pA/pF for the spindle cells (P < 0.01). I(f) current activation voltage was more positive in the spider cells than the spindle cells. Isoproterenol (1 microM) decreased the spontaneous cycle length of the spider cells by 28 +/- 3% and the spindle cells by 20 +/- 1.5% (P < 0.05). Acetylcholine (0.5 microM) hyperpolarized the membrane potential of the spider cells to -86 +/- 0.7 mV and the spindle cells to -76 +/- 0.8 mV (P < 0.05). In summary, there are at least two distinct pacemaker cell types in the sinus node with different electrophysiological characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of nitric oxide modulation on the basic and rate-dependent electrophysiological properties of AV-node in the isolated heart of rabbit: The role of adrenergic and cholinergic receptors

Introduction: Recent studies showed that nitrergic system have specific modulatory effects on electrophysiological properties of atrioventricular (AV) node. The aim of this study was to determine the effects of nitric oxide (NO) on the electrophysiological properties of isolated rabbit AV node and to investigate the role of adrenergic and cholinergic receptors in the mechanism of its action...

متن کامل

Protective role of cyclosporine on the model simulated the rotational nodal arrhythmia (AVNRT) by using extracellular field potential recordings of isolated atrioventricular-node of rabbit

Introduction: Recent studies have shown acute cardioprotective effects of cyclosporine. The aim of the present study was to determine the protective role of cyclosporine on the model simulated the rotational nodal arrhythmia (AVNRT) by using extracellular field potential recordings of isolated atrioventricular-node (AV-node) of rabbit. Methods: This study was performed on isolated double-per...

متن کامل

The role of Na+-K+-ATPase in the basic and rate-dependent properties of isolated perfused rabbit Atrioventricular Node

Introduction: Ouabaine is a well-known atrioventricular (AV) node depressant agent, but its effects on functional properties of the AV node have not been cleared. The aim of the present study was to determine how ouabaine administration modifies the rate-dependent properties of the AV node. Methods: Selective stimulation protocols were used to quantify independently electrophysiological prop...

متن کامل

Modulation of extracellular atrioventricular node field potential pattern and ventricular rhythm by morphine in experimental atrial fibrillation in isolated rabbit heart

Introduction: Endorphins are produced by cardiomyocytes, and exert different effects on the heart. The aim of the present study is to assess morphine effects on extracellular atrioventricular (AV) node field potential pattern and ventricular rhythm of isolated rabbit heart during experimental atrial fibrillation (AF). Methods: Effects of different concentrations of morphine (10, 20, 50 and 1...

متن کامل

Frequency-dependent electrophysiological properties of concealed slow pathway of isolated rabbit atrioventricular node preparation after fast pathway ablation in a functional model

Introduction: Intranodal pathways of atrioventricular (AV) node play a vital role in the delay of conduction time in response to various atrial inputs. The present study was aimed to determine the frequency-dependent electrophysiological properties of concealed slow pathway according to a functional model of isolated rabbit atrioventricular node preparation after fast pathway ablation. Meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 280 3  شماره 

صفحات  -

تاریخ انتشار 2001